Deep inelastic scattering

4 This chapter describes high-energy electron—proton inelastic scattering where
the proton breaks up in the interaction. The inelastic scattering process is first
discussed in terms of a general Lorentz-invariant extension of the ideas intro-
duced in the previous chapter, with form factors replaced by structure func-
tions. Deep inelastic scattering is then described by the QED interaction of
a virtual photon with the constituent quarks inside the proton. The experi-
mental data are then interpreted in the quark—parton model and the measured
structure functions are related to parton distribution functions that describe the
momentum distributions of the quarks. From the experimental measurements,
the proton is found to be a complex dynamical system comprised of quarks,

9 gluons and antiquarks.

8.1 Electron—proton inelastic scattering
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Because of the finite size of the proton, the cross section for electron—proton elastic
scattering decreases rapidly with energy. Consequently, high-energy e p interac-
tions are dominated by inelastic scattering processes where the proton breaks up.
For e"p — e~ X inelastic scattering, shown in Figure 8.1, the hadronic final state
resulting from the break-up of the proton usually consists of many particles. The
invariant mass of this hadronic system, denoted W, depends on the four-momentum
of the virtual photon, W? = pi = (p» + q)%, and therefore can take a range of val-
ues. Compared to the elastic scattering process, where the invariant mass of the
final state is always the mass of the proton, this additional degree of freedom in
the inelastic scattering process means that the event kinematics must be specified
by two quantities. Whereas e”p — e p elastic scattering was described in terms
of the electron scattering angle alone, the two kinematic variables used to describe
inelastic scattering are usually chosen from the Lorentz-invariant quantities W, x,
y, v and Qz, defined below.



179 8.1 Electron—proton inelastic scattering

Electron—proton inelastic scattering.

8.1.1 Kinematic variables for inelastic scattering

As was the case for elastic scattering, Q7 is defined as the negative four-momentum
squared of the virtual photon,

0’ =-¢".
When written in terms of the four-momenta of the initial- and final-state electrons,
Q2 = —(p1 — p3)2 = —ng + 2p1 ‘p3 = —2]’I’le2 + 2E1E3 — 2p1p3 cos 6.

In inelastic scattering, the energies are sufficiently high that the electron mass can
be neglected and therefore, to a very good approximation

0
0? ~ 2E|E5(1 — cos 0) = 4E, E; sin? >
implying that Q? is always positive.

Bjorken x

The Lorentz-invariant dimensionless quantity

Q2
2p2-q°

x 8.1

will turn out to be an important kinematic variable in the discussion of the quark
model of deep inelastic scattering. The range of possible values of x can be found
by writing the four-momentum of the hadronic system in terms of that of the virtual
photon

W2 =p2=(q+p)*=q*+2p2q+ps
= W+ Q? —mlz) =2p2-q,
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and therefore, from the definition of (8.1),

Q2

X= = (8.2)
0%+ W? - ml%

Because there are three valence quarks in the proton, and quarks and antiquarks
can be produced together only in pairs, the hadronic final state in an e™p inelastic
scattering process must include at least one baryon (qqq). Consequently, the invari-
ant mass of the final-state hadronic system is always greater than the mass of the
proton (which is the lightest baryon), thus

2
P

w? piZm

Because Q% > 0 and W? > my, the relation of (8.2) implies that x is always in the
range

0<x<l.

The value of x expresses the “elasticity” of the scattering process. The extreme case

of x = 1 is equivalent to W? = mg, and therefore corresponds to elastic scattering.

yandv

A second dimensionless Lorentz-invariant quantity, the inelasticity y, is defined as

p2-q
D2 P1

In the frame where the proton is at rest, p» = (m,;,0,0,0), the momenta of the
initial-state e”, the final-state e~ and the virtual photon can be written

p1=(E1,0,0,E1), p3=(E3,E3sin0,0,E3cos6) and g = (E| — E3,p; — P3),

and therefore

mp(E1 — E3) _ 1_@ 8.3)
mpE1 El. '

Hence y can be identified as the fractional energy lost by the electron in the scat-
tering process in the frame where the proton is initially at rest. In this frame, the
energy of the final-state hadronic system is always greater than the energy of the
initial-state proton, E4 > my, which implies the electron must lose energy. Conse-
quently, y is constrained to be in the range

O0<y<l
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Sometimes it is more convenient to work in terms of energies, rather than the
fractional energy loss described by y. In this case the related quantity

_ D2q
V= —,
mp

(8.4)

is often used. In the frame where the initial-state proton is at rest,
v=E| - Ej3,

is simply the energy lost by the electron.

Relationships between kinematic variables

For a given centre-of-mass energy +/s, the kinematics of inelastic scattering are
fully defined by specifying two independent observables which are usually chosen
to be two of Lorentz-invariant quantities, QZ, x,y and v. Provided the chosen quan-
tities are independent, the other two quantities then can be determined through the
relations that follow from the definitions,

and v=229 (8.5)

Q2 = —qz, X = , Y
2pa2-q P2 D1 mp

For example, it immediately can be seen that x is related to Q? and v by

2
X = 0 . (8.6)
2myv
Furthermore, for a fixed centre-of-mass energy,
s = (p1+p2)> = pi+ 3 +2p1-pa = 2p1-py + m + mg.
Since mg < mg, to a good approximation
2p1-py = s —m,
and then from the definitions of (8.5), it follows that y is proportional to v,
2my,
Y= = || % (8.7)
s —mg
Finally from (8.6) and (8.7), it can be seen that 0? is related to x and y by
Q* = (s — m)xy. (8.8)

Hence, for a fixed centre-of-mass energy, the kinematics of inelastic scattering can
be described by any two of the Lorentz-invariant quantities x, 9%, y and v, with the
exception of y and v, which are not independent.
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8.12 Inelastic scattering at low Q>

For electron—proton scattering at relatively low electron energies, both elastic and
inelastic scattering processes can occur. For example, Figure 8.2 shows the observed
energy distribution of electrons scattered through an angle of § = 10° at a fixed-
target experiment at DESY, where electrons of energy E; = 4.879 GeV were fired
at a liquid hydrogen target (essentially protons at rest). Because two independent
variables are required to define the kinematics of inelastic scattering, the corre-
sponding double-differential cross section is expressed in terms of two variables,
in this case d?o/dQ dE;.

Since the kinematics of an individual interaction are fully specified by two inde-
pendent variables, in this case the angle and energy of the scattered electron, 6
and Ej3, the invariant mass W of the unobserved final-state hadronic system can be
determined on an event-by-event basis using

W2 = (p2+q)° = p3 +2p2-q+q" = my +2pa2-(p1 — p3) + (p1 — p3)’
~ [mg + 2mpE1] —2 [mp + Eq(1 = cos 9)] E;. (8.9)

Hence, for electrons detected at a fixed scattering angle, the invariant mass W of
the hadronic system is linearly related to the energy E3 of the scattered electron.
Consequently the energy distribution of Figure 8.2 can be interpreted in terms of
W. The large peak at final-state electron energies of approximately 4.5 GeV cor-
responds to W = my,,, and these electrons can be identified as coming from elastic
scattering. The peak at E3 ~ 4.2 GeV corresponds to resonant production of a sin-
gle A* baryon with mass W = 1.232 GeV (see Chapter 9). The two smaller peaks
at E3 ~ 3.85GeV and E3 ~ 3.55GeV correspond to resonant production of other
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The energy of the scattered electron in low-energy electron—proton scattering and the corresponding
invariant mass W of the final state hadronic system. From Bartel et a/. (1968).
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Low-@* measurements of the electron—proton inelastic scattering cross section scaled to the Mott cross
section. Also shown is the expected dependence for elastic scattering. Adapted from Breidenbach et al.
(1969).

baryon states. These resonances are essentially excited bound states of the proton
(uud), which subsequently decay strongly, for example A* — pa’. The full-width-
at-half-maximum (FWHM) of a resonance as a function of W is equal to the total
decay rate I', which in turn is related to the lifetime of the resonant state by I' = 1/7.
The continuum at higher W is the start of the deep inelastic region where the proton
is broken up in the collision, resulting in multi-particle final states.

Figure 8.3 shows measurements of the e"p — e~ X differential cross section
scaled to the Mott scattering cross section of (7.36). The data are plotted as function
of Q? for three different values of W. The expected ratio for elastic scattering,
assuming the dipole form for G£(Q?) and G(Q?) is shown for comparison. The
inelastic cross sections are observed to depend only weakly on @2, in contrast to
rapidly falling elastic scattering cross section. In the deep inelastic region (higher
values of W), the near Q? independence of the cross section implies a constant
form factor, from which it can be concluded that deep inelastic scattering occurs
from point-like (or at least very small) entities within the proton.

8.2 Deep inelastic scattering
|

The most general Lorentz-invariant form of the e"p — e™p elastic scattering cross
section from the exchange of a single photon is given by the Rosenbluth formula
of (7.33),
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dQ ~ 4E?sin*(0/2) Er

do a? E; G% + TGZZVI 2 6
(1+1) 2

cos® = +27G2, sin’ g)

This can be expressed in an explicitly Lorentz-invariant form using the definitions
of 0% and y (see Problem 8.2):

G2 +1G3, myy®) 1
1-y- °Ga, .

do 3 A 21
(1+1) o |27

dg?2 ¢

The Q? dependence of the form factors Ge(0?) and Gp(Q?) and T = Q? /4my, can
be absorbed into two new functions, here written as f;(Q?) and f>(Q?), such that

2

do  4na? mﬁy w1, >

— = 1-y- + = . 8.10
0~ o [[ V- ]fz(Q) S¥ Q) (8.10)
Although y appears in this formula, it should be remembered that for elastic scat-
tering x = 1 and therefore y is a function of Q? alone. In this form, f;(Q?) is asso-
ciated with the purely magnetic interaction and f>(Q?) has electric and magnetic

contributions.

8.2.1 Structure functions

Equation (8.10) can be generalised to the inelastic scattering process, where the
differential cross section has to be expressed in terms of two independent kine-
matic quantities. It can be shown that the most general (parity conserving) Lorentz-
invariant expression for the cross section for ep — eX inelastic scattering, mediated
by the exchange of a single virtual photon, is

Loy

Here the functions fl(Qz) and fz(Qz) of (8.10) have been replaced by the two
structure functions, F1(x, Q%) and F(x, Q?), where Fi(x, Q) can be identified as
being purely magnetic in origin. Because the structure functions depend on both Q?
and x, they cannot be interpreted as the Fourier transforms of the proton charge and
magnetic moment distributions; as we will see shortly they represent something
more fundamental.

For deep inelastic scattering, where Q2 > mgyz, Equation (8.11) reduces to

d’o 3 Ara?
dxdQ?>  ¢*

FZ(X, Qz)

X

+y?Fi(x, 0H]. (8.11)

do . Ara? (1- )Fz(X, 0%)
y X

dxdo? = 0 +y*Fi(x, 07 (8.12)
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In fixed-target electron—proton deep inelastic scattering experiments, the Lorentz-
invariant kinematic variables QZ, x and y can be obtained on an event-by-event
basis from the observed energy and scattering angle of the electron, E3 and 6,
2

= Q— and y=1- E,

Zmp(E 1— E3) E 1
where E; is the incident electron energy. The double-differential cross section
is measured by counting the numbers of events in the range x — x + Ax and
0% — 0% + AQ?. The double-differential cross section at a particular value of x
and Q? can be determined for a range of y values, obtained by varying the incident
electron energy (see Problem 8.3). The y-dependence of the measured cross sec-
tions is then used to disentangle the contributions from F;(x, Q%) and F»(x, Q%), in
much the same way as for the determination of Gg(Q?) and G (Q?) as described
in Section 7.5.1.

0
Q2 =4E | E; sin’ 7 X

Bjorken scaling and the Callan—Gross relation

The first systematic studies of structure functions in inelastic electron—proton scat-
tering were obtained in a series of experiments at the Stanford Linear Accelerator
Center (SLAC) in California. Electrons of energies between 5GeV and 20 GeV
were fired at a liquid hydrogen target. The scattering angle of the electron was
measured using a large movable spectrometer, in which the energy of the detected
final-state electrons could be selected by using a magnetic field. The differential
cross sections, measured over a range of incident electron energies, were used to
determine the structure functions. The experimental data revealed two striking fea-
tures, shown in Figure 8.4. The first observation, known as Bjorken scaling, was
that both F;(x, Q%) and F»(x, Q%) are (almost) independent of Q?, allowing the
structure functions to be written as

Fi(x,0%) - Fi(x) and Fa(x, Q%) > Fa(x).

The lack of Q? dependence of the structure functions is strongly suggestive of
scattering from point-like constituents within the proton.

The second observation was that in the deep inelastic scattering regime, Q2
greater than a few GeV?, the structure functions F(x) and F,(x) are not inde-
pendent, but satisty the Callan—Gross relation

Fr(x) = 2xF(x).

This observation can be explained by assuming that the underlying process in
electron—proton inelastic scattering is the elastic scattering of electrons from point-
like spin-half constituent particles within the proton, namely the quarks. In this case
the electric and magnetic contributions to the scattering process are related by the
fixed magnetic moment of a Dirac particle.
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Early structure function measurements from fixed-target electron—proton inelastic scattering at SLAC. Left:
measurements of F,(x, Q%) showing Bjorken scaling. Right: measurements of 2xF; /F, showing the Callan—
Gross relation. Adapted from Friedman and Kendall (1972) and Bodek et al. (1979).

8.3 Electron—quark scattering
|

In the quark model, the underlying interaction in deep inelastic scattering is the
QED process of e"q — e~ q elastic scattering and the deep inelastic scattering cross
sections are related to the cross section for this quark-level process. The matrix
element for e"q — e™q scattering is obtained from the QED Feynman rules for the
Feynman diagram of Figure 8.5. The electron and quark currents are

u(p3)liey"lu(p1) and  u(ps)[—iQqey lu(p2),

and the photon propagator is given by —igw/q2 where ¢ = p; — p3. Hence the
matrix element can be written

2
My = Q;f [u(p3)y u(p1)] guv [U(pa)y"u(p2)] . (8.13)

The spin-averaged matrix element squared can be obtained from the helicity ampli-
tudes (see Problem 6.7), or using the trace approach as described in Section 6.5.5.
In either case, in the limit where the electron and quark masses can be neglected,
the spin-averaged matrix element squared is given by (6.68),

2 2 2 2
(Ml = 2Q§e4(s ;” ): 2024 1"’231;2;1"’4) : (8.14)

where as usual, s = p1 + p2, t = p1 — pzand u = p; — pa.
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Electron—quark scattering in the centre-of-mass frame and the corresponding lowest-order Feynman
diagram.

Here it is convenient to work in the centre-of-mass frame and to express the
Lorentz-invariant matrix element of (8.14) in terms of the electron scattering angle,
6*, as shown in Figure 8.5. Writing the energy of the electron in the centre-of-
mass frame as E = +/s/2, and neglecting the electron and quark masses, the four-
momenta of the initial- and final-state particles are given by

p1=(E,0,0,+E), p3=(E,+Esinf"*,0,+E cosf"),
p2 =(E,0,0,—-E), ps=(E,—Esinf*,0,—Ecosf").

The four-vector scalar products appearing in (8.14) are
p1-p2 = 2E2, p1-p3 = E*(1 —cos®*) and p1-p4 = E*(1 + cos 6").

Hence the spin-averaged matrix element squared for the QED process e"q — e™q
is

4E* + E*(1 + cos 6")?
M2y = 20264
AMyl") = 2Qqe E4(1 — cos 6*)?

The differential cross section is obtained by substituting this expression for (| M f,-|2>
into the cross section formula of (3.50), giving

do 02 |1+ 31+ cos )’

= 8.15
dQ*  8x%s (1 —cos6*)? .15
The angular dependence in the numerator of (8.15),
1+ 21 +cos6), (8.16)

reflects the chiral structure of the QED interaction. From the arguments of
Section 6.4.2, helicity is conserved in the ultra-relativistic limit of the QED inter-
action. Therefore, the only non-zero matrix elements originate from spin states
where the helicities of the electron and the quark are unchanged in the interaction,
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-1 cos® +1 -1 cos®  +1 -1 cos® +1 -1 cos®  +1
The four helicity combinations contributing to the process e"q — e~q in the limit where £ > m. The
first two, RR — RRand LL — LL, occur in a total spin state with S, = 0. The second two, RL — RL and
LR — LR, take placein S, = +1states.

as shown in Figure 8.6. The RR — RR and LL — LL scattering processes occur
in a §, = 0O state, where there is no component of the angular momentum in the
z-direction. Consequently, there is no preferred polar angle, accounting for the con-
stant term in (8.16). The RL — RL and LR — LR scattering processes occur in
S, = =1 states and hence (see Section 6.3) result in an angular dependence of

%(1 + cos 0%)?,

explaining the second term in (8.16). The denominator in the expression for the
differential cross section of (8.15) arises from the 1/¢> propagator term with

q2 =f= (pl — p3)2 =~ —E2(1 — COS 9*)

When ¢*> — 0, in which case the scattering angle 8 — 0, the differential cross
section tends to infinity. This should not be a surprise. It is analogous to the scat-
tering of a particle in a 1/r potential in classical dynamics; regardless of the impact
parameter, there is always a finite deflection (however small). The presence of the
propagator term implies that in the QED elastic scattering process, the electron is
predominantly scattered in the forward direction.

Lorentz-invariant form

Equation (8.15) gives the e"q — e~q differential cross section in terms of the
centre-of-mass scattering angle 6*. This can be expressed in a Lorentz-invariant
form by writing cos #* in terms of s and ¢> and changing variables using

da'_ do

dg?  dQ*

dQ*
dqg?
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Alternatively, the spin-averaged matrix element squared of (8.14) can be substi-
tuted directly into the Lorentz-invariant form for the differential cross section of
(3.37) with t = ¢?, giving

do 1 0z¢" (52 +u?
40 _ M2y = 9 ( ) 8.17
i~ amsp2 D = S T (®17
Since p? = v/s/2and 1 = g%, Equation (8.17) can be written as
do Qc21€4 s% +u? Q31€4 u\2
L - = 1+(—) . (8.18)
dg?  8rg*\ 2 8nq* s

Finally, this equation can be expressed in terms of g> and s alone by recalling that
the sum of the Mandelstam variables s + ¢ + u is equal to the sum of the masses of
the initial- and final-state particles. Therefore, in the high-energy limit where the
electron and quark masses can neglected,

uz—s—t:—s—qz,

and the differential cross section for the e"q — e™q elastic scattering process of
(8.18), expressed in terms of s and ¢ alone, is

2\2
1+(1+q—)}. (8.19)

do 2ma? Qé
¢~ ¢

S

8.4 The quark—parton model

Before quarks and gluons were generally accepted, Feynman proposed that the
proton was made up of point-like constituents, termed partons. In the quark—parton
model, the basic interaction in deep inelastic electron—proton scattering is elastic
scattering from a spin-half quark within the proton, as shown in Figure 8.7. In this
process, the quark is treated as a free particle; this assumption will be justified in
Chapter 10. The quark—parton model for deep inelastic scattering is formulated
in a frame where the proton has very high energy, E > my, referred to as the
infinite momentum frame. In the infinite momentum frame the mass of the proton
can be neglected, such that its four-momentum can be written p, = (E»,0,0, E>).
Furthermore, in this frame any component of the momentum of the struck quark
transverse to the direction of motion of the proton also can be neglected. Hence,
in the infinite momentum frame, the four-momentum of the struck quark can be
written

Pq = fpz = (‘fEZ’O’ 0’ §E2)9
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Electron—quark scattering in the centre-of-mass frame and the corresponding lowest-order Feynman
diagram.

(Eps P2) P2

P2 S+ q
(E2, Epo)

The quark—parton model description of inelastic scattering in terms of the QED interaction between a virtual
photon and a quark with the fraction £ of the momentum of the proton.

where € is the fraction of momentum of proton carried by the quark, as indicated
by Figure 8.8.

The four-momentum of the quark after the interaction with the virtual photon is
simply £p> + g. Since the four-momentum squared of the final-state quark is just
the square of its mass,

(Ep2+q)* = &Ep3 +2pr-q+q° =mg. (8.20)

However, &£p, is the just four-momentum of the quark before the interaction and
therefore &2 p% = mé. Thus, (8.20) implies that g + 2£p;-g = 0 and the momentum
fraction £ can be identified as

&= 7 - %
2p2-q  2p2q

= X.

Hence, in the quark—parton model, Bjorken x can be identified as the fraction of
the momentum of the proton carried by the struck quark (in a frame where the
proton has energy E > my). Therefore, the measurements of the x-dependence of
the structure functions can be related to the momentum distribution of the quarks
within the proton.

The kinematic variables for the underlying electron—quark scattering process
can be related to those for the electron—proton collision. Neglecting the electron
and proton mass terms, the centre-of-mass energy of the e™p initial state is
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s=(p1+p2)* ~2p1-pa

Because the four-momentum of the struck quark is p; = xp», the centre-of-mass
energy of the initial-state e”q system is

sq = (p1 + xp2)* ~ 2xp1-p2 = xs.

The kinematic variables x and y, defined in terms of the four-momentum of the
proton, are
) 2
y= P2'q and x = Q .
P2 Pl 2p2-q
Similarly, for the electron—quark system,

Pad _ xp2-q _

Pq'P1 Xp2:P1
Finally, because the underlying electron—quark interaction is an elastic scattering
process, xq = 1. Hence, the kinematic variables for the e™q interaction are related
to those defined in terms of the e™p interaction by

Yq

Sq=x8, Yyg=y and xq=1,

where s, x and y are defined in terms of the electron and proton four-momenta.
The cross section for e"q — e™q scattering, given by (8.19), can now be written

2\2
1+(1+q—) } (8.21)

Sq

do ZﬂazQé
g~ 4

where s is the electron—quark centre-of-mass energy squared. From (8.8), the four-
momentum squared of the virtual photon g> can be expressed as

q2 = _Q2 = (84— mg)qu(p

which in the limit where the quark mass is neglected gives
2
— = —XqYq = Y.
Sq
Hence, the differential cross section of (8.21) can be written
do 2na? QZ
dg> = 4

[1+(1—y)2].

Finally, using ¢°> = —Q? and rearranging the terms in the brackets leads to

do  4na’Q; y?
G g [(1—y)+7 : (8.22)
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which resembles the form of the deep inelastic scattering cross section expressed
in terms of the structure functions, as given by (8.12). Equation (8.22) gives the
differential cross section for e~ q elastic scattering where the quark carries a fraction
x of the momentum of the proton. Although x does not appear explicitly in this
equation, the x dependence is implicit through (8.8) whereby

Q2

v= (s— mg)x'

8.4.1 Parton distribution functions

The quarks inside the proton will interact with each other through the exchange of
gluons. The dynamics of this interacting system will result in a distribution of quark
momenta within the proton. These distributions are expressed in terms of Parton
Distribution Functions (PDFs). For example, the up-quark PDF for the proton uP(x)
is defined such that

uP(x) ox,

represents the number of up-quarks within the proton with momentum fraction
between x and x + dx. Similarly dP(x) is the corresponding PDF for the down-
quarks. In practice, the functional forms of the PDFs depend on the detailed
dynamics of the proton; they are not a priori known and have to be obtained from
experiment. Figure 8.9 shows a few possible forms of the PDFs that correspond to:
(1) the proton consists of a single point-like particle which carries all of the momen-
tum of the proton, in this case the PDF is a Dirac delta-function at x = 1; (ii) the
proton consists of three static quarks each of which carries 1/3 of the momentum
of the proton, in this case the PDF has the form of a delta-function at x = 1/3
with a normalisation of three; (iii) the three quarks interact with each other and the
delta-function at x = 1/3 is smeared out as the quarks exchange momentum; and
(iv) higher-order processes, such as virtual quark pairs being produced from gluons

(i) (ii) (iii) (iv) %
q°(x) qP(x) qP(x) q°(x)

1
3

1 x 1x >.1x

1
3

W=

Four possible forms of the quark PDFs within a proton: (i) a single point-like particle; (ii) three static quarks
each sharing 1/3 of the momentum of the proton; (iii) three interacting quarks which can exchange momen-
tum; and (iv) interacting quarks including higher-order diagrams. After Halzen and Martin (1984).



193

8.4 The quark—parton model

inside the proton, tend to result in an enhancement of the PDFs at low x, reflecting
the 1/¢* nature of the gluon propagator.

The electron—proton deep inelastic scattering cross section can be obtained from
the definition of the parton distribution functions and the expression for the differ-
ential cross section for underlying electron—quark elastic scattering process given
in (8.22). The cross section for elastic scattering from a particular flavour of quark
i with charge Q; and momentum fraction in the range x — x + Jx, is

d®o 47ra

d@? ~ ot
where qf (x) is the PDF for that flavour of quark. The double-differential cross
section is obtained by dividing by dx and summing over all quark flavours

[(1 - )+ X 07} (x) ox,

d2geP : dra?
dxdg?  ¢*

[(1 -+ Z 074} (). (8.23)

This is the parton model prediction for the electron—proton deep inelastic scattering
cross section. Comparison with (8.12), which is the general expression for the deep
inelastic scattering cross section in terms of the structure functions,

d’o 47Ta (1-y) ep( Q2)
dde2 Q

leads to the parton model predictions for F Tp (x, 0% and F3P(x, 0%),

+y FP(x, QZ)} :

FP(x, 0%) = 2xFP(x, 0%) = x ) 070 ().

The parton model naturally predicts Bjorken scaling; because the underlying pro-
cess is elastic scattering from point-like quarks, no (strong) Q> dependence is
expected. Consequently, both F| and F, can be written as functions of x alone,
Fi(x,0%) — Fi(x) and F»(x, Q%) — F>(x). The parton model also predicts the
Callan—Gross relation, F>(x) = 2xF(x). This is due to the underlying process
being elastic scattering from spin-half Dirac particles; the quark magnetic moment
is directly related to its charge and therefore the contributions from the electromag-
netic (F3) and the pure magnetic (F) structure functions are fixed with respect to
one another.

8.4.2 Determination of the parton distribution functions

The parton distribution functions reflect the underlying structure of the proton. At
present they cannot be calculated from first principles. This is because the theory
of QCD has a large coupling constant, ag ~ O(1), and perturbation theory cannot
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Production of virtual qq pairs within the proton.

be applied. The PDFs therefore have to be extracted from measurements of the
structure functions in deep inelastic scattering experiments and elsewhere.

For electron—proton deep inelastic scattering, the structure function F ;p (x) is
related to the PDFs by

FP(x) = x Z 04" (x). (8.24)

In the static model of the proton, it is formed from two up-quarks and a down-
quark, and it might be expected that only up- and down-quark PDFs would appear
in this sum. However, in reality the proton is a dynamic system where the strongly
interacting quarks are constantly exchanging virtual gluons that can fluctuate into
virtual qq pairs through processes such as that shown in Figure 8.10. Because glu-
ons with large momenta are suppressed by the 1/¢> gluon propagator, this sea of
virtual quarks and antiquarks tend to be produced at low values of x. Electron—
proton inelastic scattering therefore involves interactions with both quarks and
antiquarks. Furthermore, there will be contributions to the scattering process from
strange quarks through interactions with virtual ss pairs and even very small con-
tributions from off-mass shell heavier quarks. Here, for the sake of clarity, the rela-
tively small contribution from strange quarks is neglected and the sum in (8.24) is
restricted to the light flavours, giving the quark—parton model prediction

FP(x) = xz 07¢"(x) ~ x(—up(x) + ;dp(x) + gup(x) + ;d (x)) (8.25)

where uP(x), dP(x), uP(x) and Ep(x) are respectively the up-, down-, anti-up and
anti-down parton distribution functions for the proton. A similar expression can be
written down for the structure functions for electron—neutron scattering,

F3'(x) = XZ Q HEIRS X(L—Lu (x) + 1a’n(x) + u"(x) + d (x)) (8.26)

where the PDFs now refer to the momentum distributions within the neutron.
With the exception of the relatively small difference in Coulomb interactions
between the constituent quarks, the neutron (ddu) would be expected to have the
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same structure as the proton (uud) with the up- and down-quarks interchanged.
This assumed isospin symmetry (see Chapter 9) implies that the down-quark PDF
in the neutron is the same as the up-quark PDF in the proton and thus

d"(x) =uP(x) and u"(x)=d°(x).

In order to simplify the notation, the PDFs for the proton are usually written as
u(x), d(x), u(x) and d(x), in which case the neutron PDFs can be taken to be

d"(x) =uP(x) = u(x) and u"(x) =d°(x) = d(x).

Likewise, the assumed isospin symmetry implies that the neutron antiquark PDFs
can be written in terms of the antiquark PDFs of the proton,

d'(x) =) =u(x) and #(x)=d (x) = d(x).

Thus the proton and neutron structure functions of (8.25) and (8.26), can be written
in terms of the PDFs of the proton,

F;p(x) = 2xFTp(x) = x(gu(x) + éd(x) + gﬁ(x) + ég(x)) , (8.27)
FE(x) = 26F(x) = x(d ! 4 L 8.28
5 (x) = xl(x)—x§(x)+§u(x)+§(x)+§u(x). (8.28)

Integrating these expressions for the structure functions over the entire x range
gives

1

1
. 4 1 4 1
f FPdx=Zfu+<fa and f FS"(x)dx = = fy + = fa, (8.29)
0 9" " 9 0 974" 9

where f, and fy are defined by

1 1
fu = f [xu(x) + xu(x)]dx and fy= f [xd(x) + xa(x)] dx.
0 0

The quantity f, is the fraction of the momentum of the proton carried by the
up- and anti-up quarks. Similarly f; is the fraction carried by the down-/anti-down-
quarks. The momentum fractions f; and fy can be obtained directly from the exper-
imental measurements of the proton and neutron structure functions. For example,
Figure 8.11 shows an experimental measurement of F’ ;p(x, 0?) as a function of x
for deep inelastic scattering events with 2GeV? < Q% < 30GeV? as observed at
SLAC. The area defined by the measured data points gives

ngp(x) dx ~ 0.18.
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SLAC measurements of F,* (x, Q%) for2 < @3/ GeV* < 30. Data from Whitlow et al. (1992).

Similarly, F5"(x) can be extracted from electron—deuterium scattering data (see
Problem 8.6), and it is found that

ngn(x) dx~0.12.

Using the quark—parton model predictions of (8.29), these experimental results can
be interpreted as measurements of the fractions of the momentum of the proton
carried by the up-/anti-up- and down-/anti-down-quarks:

fu=~036 and f3=0.18.

Given that the proton consists of two up-quarks and one down-quark, it is perhaps
not surprising that f, = 2 fy. Nevertheless, the total fraction of the momentum of the
proton carried by quarks and antiquarks is just over 50%; the remainder is carried
by the gluons that are the force carrying particles of the strong interaction. Because
the gluons are electrically neutral, they do not contribute to the QED process of
electron—proton deep inelastic scattering.

8.4.3 Valence and sea quarks

It is already clear that the proton is a lot more complex than first might have been
anticipated. The picture of a proton as a bound state consisting of three “valence”
quarks is overly simplistic. The proton not only contains quarks, but also contains
of a sea of virtual gluons that give rise to an antiquark component through g — qq
pair production. To reflect these two distinct components, the up-quark PDF can
be split into the contribution from the two valence quarks, written as uy(x), and a
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contribution from the sea of up-quarks that are pair-produced from virtual gluons,
us (x). In this way, the proton light quark PDFs can be decomposed into

u(x) = uy(x) + us(x) and d(x) = dv(x) + ds(x).
In the case of the antiquark PDFs, there are only sea quark contributions,
u(x) = us(x) and d(x) = ds(x).

Since the proton consists of two valence up-quarks and one valence down-quark, it
is reasonable to expect that the valence quark PDFs are normalised accordingly,

1 1
f uy(x)dx =2 and f dv(x)dx=1.
0 0

Although there is no corresponding a priori expectation for the sea quarks, some
reasonable assumptions can be made. Firstly, since the sea quarks and the anti-
quarks of a given flavour are produced in pairs, the sea quark PDF will be the same
as the PDF for the corresponding antiquark. Furthermore, since the masses of the
up- and down-quarks are similar, it is reasonable to expect that the sea PDFs for
the up- and down-quarks will be approximately the same. With these assumptions,
the sea PDFs can all be approximated by a single function, written S (x), such that

us(x) = us(x) ~ ds(x) = ds(x) = S (x).
Writing (8.27) and (8.28) in terms of the valence and sea quark PDFs leads to

e 4 1 10
sz(x) = X(§MV(X) + §a'v(x) + 35()6)),

F3'(x) = x(gdv(x) + éuv(x) + gS(x)).

With the above assumptions, the ratio of F5"(x) to F ;p(x) is predicted to be

F'(0)  4dy(x) + uy(x) + 105 (x)
FP(x)  4uy(x) +dy(x) + 108 (x)°

(8.30)

Although the PDFs need to be determined experimentally, some qualitative pre-
dictions can be made. For example, since the sea quarks are expected to be pro-
duced mainly at low x, it is reasonable to hypothesise that the sea quarks will give
the dominant contribution to the proton PDFs at low x. In this case, the low-x limit
of (8.30) would be

F5'(x)

—1 as x— 0.
FP(x)

This prediction is supported by the data of Figure 8.12, which shows the ratio
of the F3"(x)/F zp(x) obtained from electron—proton and electron—deuterium deep
inelastic scattering measurements.
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The ratio of " (x)/ F;p(x) obtained from electron—deuterium and electron—proton deep inelastic scattering
measurements at SLAC. Data from Bodek et al. (1979).

Owing to the 1/¢* gluon propagator, which will suppress the production of sea
quarks at high x, it might be expected that the high-x PDFs of the proton will be
dominated by the valence quarks. In this case,

FS'Mx)  ddy(x) + uy(x)

— s x—1.
FPG)  dw)+dv

If it is also assumed that uy(x) = 2dy(x), the ratio of F;“(x)/ng(x) would be
expected to tend to 2/3 as x — 1. This is in clear disagreement with the data of
Figure 8.12, where it can be seen that

F'(x) 1
5 5 asx—lL
Fl(x) 4
This would seem to imply that the ratio dy(x)/uy(x) — 0 as x — 1. Whilst this
behaviour is not fully understood, a qualitative explanation based on the exclu-
sion principle can be made. At high x, one of the valence quarks carries most
of the momentum of the proton and the other two valence quarks must be in a
low momentum state. Since the exclusion principle forbids two like-flavour quarks
being in the same state, the configuration where the down-quark in the proton is at
high x and both up-quarks have low momentum is disfavoured.

There are a number of conclusions that can be drawn from the above discussion.
Firstly, the proton is a complex system consisting of many strongly interacting
quarks and gluons. Secondly, whilst qualitative predictions of the properties of the
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PDFs can be made, relatively simplistic arguments do not always work. Ultimately,
the parton distribution functions have to be inferred directly from experimental
data.

8.5 Electron—proton scattering at the HERA collider

The studies of deep inelastic scattering at very high Q? and at very low x were
amongst the main goals of the HERA electron—proton collider that operated from
1991 to 2007 at the DESY (Deutsches Elektronen-Synchrotron) laboratory in Ham-
burg, Germany. It consisted of a 3 km circumference ring where 27.5 GeV electrons
(or positrons) were collided with 820 GeV or 920 GeV protons. Two large experi-
ments, HI and ZEUS, were located at opposite sides of the ring. Each experiment
recorded over one million e*p deep inelastic collisions at Q> > 200 GeV?2. These
large data samples at a centre-of-mass energy of /s ~ 300 GeV, enabled the struc-
ture of the proton to be probed with high precision, both at Q% values of up to
2 x 10* GeV? and at x below 107,

Figure 8.13 shows an example of a very-high-Q? interaction recorded by the H1
experiment. The final-state hadronic system is observed as a jet of high-energy par-
ticles. The energy and direction of this jet of particles is measured less precisely
than the corresponding properties of the electron. Consequently, for each observed
event, Q% and x are determined from the energy and scattering angle of the elec-
tron. The results from deep inelastic scattering data from the H1 and ZEUS exper-
iments, summarised in Figure 8.14, provide a precise determination of the proton
structure functions over a very wide range of x and Q°. The data show a number

A high-energy electron—proton collision in the H1 detector at HERA. In this event the electron (the particle
recorded in the lower part of the detector) is scattered through a large angle and the hadronic system from
the break up of the proton forms a jet of particles. Courtesy of the H1 Collaboration.
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Measurements oszep(x, @%) at HERA. Results from both the H1and ZEUS experiments are shown. The different
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different values of x are shifted by —log x. Also shown are lower-(? data from earlier fixed-target experiments
(BCDMS, E665, NMCand the SLAC experiments). From Beringer et al. (2012), ©the American Physical Society.

of interesting features. For 0.01 < x < 0.5, where the measurements extend out to
Q2 =2x10*GeV?, only a weak Q2 dependence of F gp(x, Q2) is observed, broadly
consistent with Bjorken scaling. It can therefore be concluded that quarks appear
to be point-like particles at scales of up to Q% = 2 x 10* GeV?. If the quark was a
composite particle, deviations from Bjorken scaling would be expected when the
wavelength of the virtual photon, 4 ~ hc/|Q|, became comparable to the size of
the quark. The observed consistency with Bjorken scaling therefore implies that
the radius of a quark must be smaller than

rq < 107%¥m,
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8.5.1 Scaling violations

Whilst Bjorken scaling holds over a wide range of x values, relatively small devi-
ations are observed at very low and very high values of x. For example, at high
(low) values of x, the proton structure function is observed to decrease (increase)
with increasing Q2. Put another way, at high Q? the measured structure functions
are shifted towards lower values of x relative to the structure functions at low Qz,
as indicated in Figure 8.15. This behaviour, known as scaling violation, implies
that at high Q?, the proton is observed to have a greater fraction of low x quarks.
These scaling violations are not only expected, but the observed Q? dependence is
calculable in the theory of the strong interaction, QCD.

The mathematical description of the origin of scaling violations is beyond the
scope of this book and only a qualitative description is given here. At low Q?, there
is a length scale, determined by the wavelength of the virtual photon, below which
it is not possible to resolve any spatial sub-structure, as indicated in Figure 8.16a.
At higher values of 97, corresponding to shorter-wavelengths of the virtual photon,
it is possible to resolve finer detail. In this case, the deep inelastic scattering process
is sensitive to the effects of quarks radiating virtual gluons, ¢ — qg, over smaller
length scales, as indicated in Figure 8.16b. Consequently, more low-x quarks are
“seen" in high-Q? deep inelastic scattering.

Although currently it is not possible to calculate the proton PDFs from first prin-
ciples within the theory of QCD, the Q? dependence of the PDFs is calculable

(a) (b)

Low x

& R
C’_ Medium x O
= x
S w 8o
In Q2 X

The general features of the evolution of F;p(x, @): (a) the @? dependence at low and high x and (b) the x
dependence at low and high (2.

(@)

Finer structure within the proton can be resolved by shorter-wavelength virtual photons leading to the obser-
vation of lower x partons at higher Q2. The circled regions indicate the length scale below which structure
cannot be resolved.
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using the parton evolution functions known as the DGLAP (Dokshitzer—Gribov—
Lipatov—Altarelli-Parisi) equations. These equations are based on universal parton
splitting functions for the QCD processes q — qg and g — qq. The observed scal-
ing violations in deep inelastic scattering therefore provide a powerful validation
of the fundamental QCD theory of the strong interaction. A good introduction to
the DGLAP evolution equations can be found in Halzen and Martin (1984).

8.6 Parton distribution function measurements
]

Information about the parton distribution functions of the proton can be extracted
from high-energy measurements involving protons, such as: fixed-target electron—
proton and electron—neutron scattering; high-energy electron—proton collider data;
neutrino—nucleon scattering data (discussed in Chapter 12); high-energy pp collider
data from the Tevatron; and very-high-energy pp collider data from the LHC. The
different experimental measurements provide complementary information about
the PDFs. For example, neutrino scattering data provide a direct measurement of
the %(x) and d(x) content of the proton and the pp collider data provides information
on the gluon PDF, g(x).

The proton PDFs are extracted from a global fit to a wide range of experimental
data. Owing to the complementary nature of the different measurements, tight con-
straints on the PDFs are obtained. In practice, the PDFs are varied, subject to the

The current understanding of the proton PDFs at @2 = 10 GeV? as determined from the MRST fit to a wide
range of experimental data. The relatively small strange quark PDF s(x) is shown. PDFs from the Durham
HepData project.
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constraints imposed by the theoretical framework of QCD such as the DGLAP
evolution equations, to obtain the best agreement with experimental data. The
output of this procedure is a set of PDFs at a particular Q° scale. For example,
Figure 8.17 shows the extracted PDFs at Q> = 10 GeV? obtained from a recent fit
to the experimental data, where it is assumed that u(x) = uy(x) + u(x). The con-
tribution from gluons is large and, as expected, is peaked towards low values of x.
The antiquark PDFs are relatively small and, because the antiquarks originate from
g — qq, also are peaked towards low values of x. Apart from at high values of x, it
is found that uy(x) = 2dy(x) as expected. Finally, it is worth noting that although
the PDFs for U and d are similar, there is a small difference with d(x) > u(x).
This may be explained by a relative suppression of the g — uu process due to
the exclusion principle and the larger number of up-quark states which are already
occupied.

Summary
|

In this chapter the process of deep inelastic scattering has been described in terms
of the quark—parton model, where the underlying process is the elastic scattering
of the electron from the quasi-free spin-half constituent quarks. The kinematics
of inelastic scattering were described in terms of two of the kinematic variables
defined below

0 P29

, Y and vzw.
2p>-q P2°P1 mp

Q2 = —qz, X =

In the quark—parton model, x is identified as the fraction of the momentum of the
proton carried by the struck quark in the underlying e"q — e™q elastic scattering
process. The quark—parton model naturally describes the experimentally observed
phenomena of Bjorken scaling, F(x, Q%) — F(x), and the Callan—Gross relation,
Fz(x) = 2xF1(x).

In the quark—parton model, cross sections can be described in terms of par-
ton distribution functions (PDFs) which represent the momentum distributions of
quarks and antiquarks within the proton. The PDFs can not yet be calculated from
first principles but are determined from a wide range of experimental data. The
resulting PDF measurements reveal the proton to be much more complex than a
static bound state of three quarks (uud); it is a dynamic object consisting of three
valence quarks and a sea of virtual quarks, antiquarks and gluons, with almost
50% of the momentum of the proton carried by the gluons. The precise knowl-
edge of the PDFs is an essential ingredient to the calculations of cross sections
for all high-energy processes involving protons, such as proton—proton collisions
at the LHC.
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The quark—parton model provides a hugely successful description of the dynamic
nature of the proton. However, it does not explain why the only observed hadronic
states are baryons and mesons or why the proton is the lowest mass baryon. The
static quark model is the subject of the next chapter.

Problems
I

(B 81  Usethedatain Figure 8.2 to estimate the lifetime of the A* baryon.
@ 8.2  Infixed-target electron—proton elastic scattering

@ =2my(E - B) =2mpEy and @ = 4EE5sin’(6/2).
(@) Use these relations to show that

0

E, m? E 0 mly?
) _ B p 2 _ P
sin (—) = E_3_02 and hence  — cos (5) =1-y—-—.

1 ¢

(b) Assuming azimuthal symmetry and using Equations (7.31) and (7.32), show that

mw

2

dQ| do 7w do

do ‘
i@ " ld@ldQ ~ 2dQ’
(c) Using the results of (a) and (b) show that the Rosenbluth equation,

dQ ~ 4Bsin'0/)

d L E(G+TG 0 0
c a i M cos? - + 21 Glysin® - |,
1+71) 2 2

can be written in the Lorentz-invariant form

do 4w |G+ 16 my*) 1
_ i [ M(1—y—#+§y26,zw.

Q@ ¢

I+71)

& 83  Infixed-target electron—proton inelastic scattering:

(@) show that the laboratory frame differential cross section for deep-inelastic scattering is related to the
Lorentz-invariant differential cross section of Equation (8.11) by

do _ hhk do _HE 2me2 o
d5dQ 7 dEd@ 1 @ dxd@’

where £; and £; are the energies of the incoming and outgoing electron.
(b) Show that

me ¥ 1E L0 mxXy g
— - =—=sin"- and T1-y- = — (05
¢ 2 mE 2 Y™7@ Tk
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